Two-Step Regulation of a Meristematic Cell Population Acting in Shoot Branching in Arabidopsis
نویسندگان
چکیده
Shoot branching requires the establishment of new meristems harboring stem cells; this phenomenon raises questions about the precise regulation of meristematic fate. In seed plants, these new meristems initiate in leaf axils to enable lateral shoot branching. Using live-cell imaging of leaf axil cells, we show that the initiation of axillary meristems requires a meristematic cell population continuously expressing the meristem marker SHOOT MERISTEMLESS (STM). The maintenance of STM expression depends on the leaf axil auxin minimum. Ectopic expression of STM is insufficient to activate axillary buds formation from plants that have lost leaf axil STM expressing cells. This suggests that some cells undergo irreversible commitment to a developmental fate. In more mature leaves, REVOLUTA (REV) directly up-regulates STM expression in leaf axil meristematic cells, but not in differentiated cells, to establish axillary meristems. Cell type-specific binding of REV to the STM region correlates with epigenetic modifications. Our data favor a threshold model for axillary meristem initiation, in which low levels of STM maintain meristematic competence and high levels of STM lead to meristem initiation.
منابع مشابه
Molecular cloning and characterization of genes expressed in shoot apical meristems.
The above-ground portion of a plant develops from the shoot apical meristem. An abundant source of apical meristems was obtained from cauliflower heads. Meristematic cDNAs were identified by differential screening and used to isolate corresponding Arabidopsis thaliana genes. Transcriptional promoters from Arabidopsis clones were fused to the beta-glucuronidase (GUS) reporter gene and introduced...
متن کاملInvolvement of rRNA biosynthesis in the regulation of CUC1 gene expression and pre-meristematic cell mound formation during shoot regeneration
At an early stage of shoot regeneration from calli of Arabidopsis, pre-meristematic cell mounds develop in association with localized strong expression of CUP-SHAPED COTYLEDON (CUC) genes. Previous characterization of root initiation-defective 3 (rid3), an Arabidopsis mutant originally isolated as being temperature-sensitive for adventitious root formation, with respect to shoot regeneration im...
متن کاملMicrografting techniques for testing long-distance signalling in Arabidopsis.
Grafting in species other than Arabidopsis has generated persuasive evidence for long-distance signals involved in many plant processes, including regulation of flowering time and shoot branching. Hitherto, such approaches in Arabidopsis have been hampered by the lack of suitable grafting techniques. Here, a range of micrografting methods for young Arabidopsis seedlings are described. The simpl...
متن کاملKNAT6: an Arabidopsis homeobox gene involved in meristem activity and organ separation.
The homeobox gene family plays a crucial role during the development of multicellular organisms. The KNOTTED-like genes from Arabidopsis thaliana (KNAT6 and KNAT2) are close relatives of the meristematic genes SHOOT MERISTEMLESS (STM) and BREVIPEDICELLUS, but their function is not currently known. To investigate their role, we identified null alleles of KNAT6 and KNAT2. We demonstrate that KNAT...
متن کاملThe CUC1 and CUC2 genes promote carpel margin meristem formation during Arabidopsis gynoecium development
Carpel margin meristems (CMMs), a pair of meristematic tissues present along the margins of two fused carpel primordia of Arabidopsis thaliana, are essential for the formation of ovules and the septum, two major internal structures of the gynoecium. Although a number of regulatory factors involved in shoot meristem activity are known to be required for the formation of these gynoecial structure...
متن کامل